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Abstract 

The developments of mathematical model to monitor the rate of seepage force in the soil are based on the 

behaviour of the formation in terms of fluid flow conditions. These are under the influences of geophysical 

properties of the soil. Subject to these conditions, the expression of viscous friction and drag forces in clay and 

silty formations were observed to develop heterogeneous seepage forces in deltaic formations, such condition 

developed some behaviuor that required mathematical model to express the behavioral influences from these 

soil properties to predict the rate of seepage forces in deltaic formation. When water flows through the soil, the 

water head is dissipated in viscous friction during energy dissipation, the drag forces  is exerted on the soil 

particles in the direction of flow,  it confirms that when water deposits in the soil column, the fluid height in the 

surface are raised, whereby the water pressured at the bottom of the soil sample increased and the drag forces  

of the soil particles become greater, the height of the buoyant weight of the particles are found to be in a 

balanced state at critical height, the expressed governing equations were developed under the influence of these 

conditions as it is stated to generate seepage forces in a deltaic  formation. The expressed model developed will 

monitor and predict the rate of seepage forces in clay and silty formations.  Copyright © WJATES, all rights 

reserved.  
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1. Introduction  

Groundwater is frequently encountered in construction projects, the movement of water through soil is known 

to be seepage and such movement leads to several groups of problem in Civil Engineering. Seepage of water 

has a bearing on three major types of problems; the loss of stored water through an earth dams foundation (ii) 

instability of slopes and foundation of hydraulic structure due to the force exerted by the percolating water (iii) 

settlement of structure founded on or above compressibility layers due to explosion of water from void caused 

by lead applications. When water flows through soil, the water is dissipated in viscous friction. During energy 

dissipation, a drag force is exerted on the soil particles in the direction of flow. In most instant column of soil 

mailto:solomoneluozo2000@yahoo.com


World Journal of Advanced Technology and Engineering Sciences 

Vol. 1, No. 1, January 2015, pp. 1-14 

Available online at http://wjates.com/ 

 

2 

 

the height H of the water surface in the reservoir is raised, the water pressure at the bottom of the soil is 

increased and the drag force on the soil becomes greater. The drag force and the buoyant weight of the particles 

are in balance at a critical height h = hs and an increase in height will cause the soil particles to be washed out of 

the container. At this critical condition, the force acting on the bottom of the soil sample will just be equal to the 

weight of the soil and water mass of the container [21]. Further more in relation to seepage forces earth dams 

are formed by different zones constructed of especial material; furthermore, each zone has effect on stability 

and operation of earth dams. Because in zoned earth dams different particle with various size are settled beside 

each other, water infiltrate among them. This situation continues gradually until difference between water 

potential in up and down stream cause moving particles from porosity and starting piping suddenly. This event 

is named as seepage. [5,6] In theory, seepage is named gravitation water which flow into soil particles porosity 

in result of gravity. Seepage in dam is similar to flow in an open channel because their free surface and 

atmosphere pressure. But, underground water is including two sections liquid/solid; and, flow velocity and 

discharge are controlled by soil permeability. A method to display flow in body and foundation of earth dam is 

Flow net. The primary line in flow net is named as phreatic line which restricts seepage. In spite of existing 

different permeability in soils, when the ratio of horizontal to vertical permeability is same, the phreatic line 

will reach identical position eventually [4]. 

More so, centrifuge modelling technique is being used to study many different aspects of soil behaviour. Flow 

velocity in a centrifuge model at Ng will be N times faster compared to the prototype it represents. 

Consequently the scaling law for seepage velocity has been established as m p v = N v [18] and has been 

confirmed experimentally [[8,9]. This scaling law for seepage velocity has been accepted and commonly used, 

but the question of whether it is the Darcy’s permeability (hydraulic conductivity) or the hydraulic gradient that 

is a function of gravity has not been addressed properly. This issue was highlighted 14], who points out to the 

multiplicity of the concepts in scaling flow velocity. [10] And [12] also discussed this issue. [17,11] , [19] and 

more recently [18] are among many others who have considered permeability ( k ) to be directly proportional to 

gravity and hydraulic gradient (i ) to be independent of gravity. While this explains why seepage velocity has a 

scaling law of N (m p v = N v ), there is an alternative explanation for the increase of seepage velocity in a 

centrifuge. [18, 13,14,15,16, 19 and 20] have all suggested that permeability to be independent of gravity and it 

is the hydraulic gradient which has got a scaling factor of N. Since both sides of the explanation result in the 

same final answer m p v = N v and it is the final seepage velocity that is considered important in many cases, the 

controversy has often been overlooked. 

2. Governing equation  
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Let ZTs f  from equation (2), we have 
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This implies that equation (6), (7) and (8) can be written as: 
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From (9) 
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Combining (18) and (19), we have  
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3. Materials and Method  

Standard laboratory experiment where performed to monitor the rate of flow under seepage condition at 

different formation, the soil deposition of the strata were collected in sequences base on the structural 

deposition at different locations, this samples collected at different location generate variation at different depth 

producing different migration of fluid flow developing seepage force at different strata, the experimental results 

are  applied to compare with the theoretical values to determine the validation of the model.  

4. Result and Discussion  

Results and discussion are presented in tables including graphical representation of seepage force at different 

strata  
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                  Table 1: Theoretical values of seepage force at different depths 

Depth [m] 

Theoretical Values  of 

seepage force 

2 5.611 

4 5.623 

6 5.635 

8 5.646 

10 5.658 

12 5.67 

14 5.682 

16 5.694 

18 5.706 

20 5.717 

22 5.729 

24 5.741 

26 5.753 

28 5.765 

30 5.779 

 

Table 2: Theoretical values of seepage force at different Time 

Time  

Theoretical Values  of 

seepage force 

2 5.611 

4 5.623 

6 5.635 

8 5.646 

10 5.658 

12 5.67 

14 5.682 

16 5.694 

18 5.706 

20 5.717 

22 5.729 

24 5.741 

26 5.753 

28 5.765 

30 5.779 
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 Table 3: Theoretical values of seepage force at different depths 

Depth [m] 

Theoretical Values  of 

seepage force 

3 5.6 

6 5.71 

9 5.77 

12 5.83 

15 5.89 

18 5.95 

21 6.01 

24 6.07 

27 6.13 

30 6.19 

                    

                                      Table 4: Theoretical values of seepage force at different depths 

Time per day 

Theoretical Values  of 

seepage force 

10 5.6 

20 5.71 

30 5.77 

40 5.83 

50 5.89 

60 5.95 

70 6.01 

80 6.07 

90 6.13 

100 6.19 

 

Table 5: Comparison of Theoretical and Measured Values of Seepage Force at Different Depth 

Depth [m] 

Theoretical Values  of 

seepage force Measured Values 

2 5.611 5.608 

4 5.623 5.618 

6 5.635 6 

8 5.646 5.738 

10 5.658 5.748 

12 5.67 5.758 

14 5.682 5.768 

16 5.694 5.778 

18 5.706 5.788 

20 5.717 5.798 
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22 5.729 5.808 

24 5.741 5.818 

26 5.753 5.828 

28 5.765 5.838 

30 5.779 5.848 

 

Table 6: Comparison of Theoretical and Measured Values of Seepage Force at Different Time 

Time  

Theoretical Values  of 

seepage force Measured Values 

2 5.611 5.615 

4 5.623 5.626 

6 5.635 5.639 

8 5.646 5.648 

10 5.658 5.653 

12 5.67 5.668 

14 5.682 5.684 

16 5.694 5.698 

18 5.706 5.701 

20 5.717 5.714 

22 5.729 5.724 

24 5.741 5.738 

26 5.753 5.755 

28 5.765 5.761 

30 5.779 5.775 

 

Table 7: Comparison of Theoretical and Measured Values of Seepage Force at Different Depth 

Depth [m] 

Theoretical Values  of 

seepage force Measured Values 

3 5.6 5.63 

6 5.71 5.69 

9 5.77 5.75 

12 5.83 5.81 

15 5.89 5.87 

18 5.95 5.93 

21 6.01 5.99 

24 6.07 6.05 

27 6.13 6.11 

30 6.19 6.17 
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Table 8: Comparison of Theoretical and Measured Values of Seepage Force at Different Depth 

Time per day 

Theoretical Values  of 

seepage force Measured Values 

10 5.6 5.59 

20 5.71 5.69 

30 5.77 5.75 

40 5.83 5.79 

50 5.89 5.84 

60 5.95 5.91 

70 6.01 5.99 

80 6.07 6.04 

90 6.13 6.11 

100 6.19 6.15 

 

 

Figure 1: Theoretical values of seepage force at different depths 

y = 0.0059x + 5.5988 
R² = 0.9999 

5.6

5.62

5.64

5.66

5.68

5.7

5.72

5.74

5.76

5.78

5.8

0 5 10 15 20 25 30 35

Th
e

o
re

ti
ca

l v
al

u
e

s 
o

f 
Se

e
p

ag
e

 F
o

rc
e

 

Depth [m] 

Theoretical Values  of seepage
force

Linear (Theoretical Values  of
seepage force)



World Journal of Advanced Technology and Engineering Sciences 

Vol. 1, No. 1, January 2015, pp. 1-14 

Available online at http://wjates.com/ 

 

9 

 

 

Figure 2: Theoretical values of seepage force at different Time 

 

 

Figure 3: Theoretical values of seepage force at different Time 
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Figure 4: Theoretical values of seepage force at different Time 

 

Figure 5: Comparison of Theoretical and Measured Values of Seepage Force at Different Depth 
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Figure 6: Comparison of Theoretical and Measured Values of Seepage Force at Different Time 

 

Figure 7: Comparison of Theoretical and Measured Values of Seepage Force at Different Depth 
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Figure 8: Comparison of Theoretical and Measured Values of Seepage Force at Different Time 
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seepage force with slight variation under the influences of homogeneous structural setting of the formation, 

these include the geophysical properties of the soil formation under flow of fluid between the intercedes of  the 

strata.  
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